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Abstract 

Interpolation of data gathered at a finite number of locations is an everyday issue 
with spatial data. The choice of the best interpolation algorithm has been a topic of 
interest for a long time. Typical papers take a single dataset, a single set of data 
points, and a handful of algorithms. They report results of considering a subset A of 
the data points, application of each algorithm to the complement of A, and 
evaluating the MAD/RMSE over such points. The lower the better, so a ranking 
among methods (without confidence level) can be derived based upon it. We believe 
that the best interpolation algorithm should consider not merely the function value 
at some designated points, but also the spectral properties of the original field. We 
have used a metric named ESAM for that. Using a sample of N = 500, 2500 and 
5000 irregularly distributed points taken from a reference DEM, we applied a 
number of interpolation methods and create a ranking among them using MAD, 
RMSE and ESAM as the figure of merit. ESAM ranking does not agree with the 
others. In addition, in this paper we will show how to build a ranking with a 
confidence level. 
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1. Introduction 

Any interpolant is an empirical function estimated with data from scattered 
locations which honours the data values. They are widely used in almost any field 
(geosciences, mathematics, physics, etc.) for predictive and visualization purposes. 
Since the empirical functions are not unique (unless extra requirements are 
imposed, like a prescribed function subspace) there is a permanent interest in 
assessing and selecting the best one.  

There exist a number of options, and the user might have difficulties to choose 
among them; the selection of the best interpolation algorithm has been a topic of 
interest for a long time (Goodin et al., 1979; Franke, 1982; Lam, 1983; Dubois 
1997; Caruso and Quarta, 1998; Li and Revesz, 2004, and others). Typical papers 
take a single dataset, a single set of data points, and a handful of algorithms. They 
report results of considering a subset A of the data points, use them to estimate the 
empirical function, apply it to the complement of A, and evaluating some metric 
over discrepancies observed at such points. There is one value of the metric for 
each interpolation method. Subset A might be kept fixed in the experiment, or 
might be systematically build by excluding one point at a time (process known as 
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Cross Validation, CV, to be described below). There exist a number of possible 
metrics: mere square root of the sum of squares (RMSE), mean absolute deviation 
(MAD), etc. Irrespective of the choice, the smaller metric the better, and thus a 
ranking among methods can be derived based upon its value. 

2. Traditional metrics 

There have been attempts to have a well established testbed to compare a large 
number of methods (Dubois 1997). In their experiment they coordinated a blind 
experiment where daily rainfall values at 100 locations were used to predict the 
outcome at 367 other locations. After the estimate was received, the participants 
evaluate their own merit using RMSE and a rank could be derived. However, no 
confidence level was attached to the result. 

(Kidner et al., 1999) compared six synthetic DEMs against a number of local 
polynomial functions, concluding that the higher order ones over perform the linear 
ones. For each of the test DEM, they produced a rank among the available 
functions, also based upon the RMSE. Later, the final winner was declared after 
summing their ranks. No confidence levels were reported, as well as enough 
detailed information to repeat the experiment. 

(Falivene et al., 2010) described an experiment where the figure of merit 
(metric) is the mean absolute deviation of a vector of cross-validated (CV) values. 
Its j-th element can be calculated by hiding the j-th data value, use the N-1 others 
for estimate it with each algorithm and calculate the difference with respect to the 
hidden known value. Ideally all vector elements should be zero; a good result will 
be that all values are small. For convenience, they emphasize that some methods 
consider just a small number of neighbours in the vicinity of the known value, and 
ignore the others; in some methods such number might be regarded as a parameter. 
They claim that appropriate metrics of success is based upon the absolute deviation, 
using its mean (MAD) and its standard deviation (SD), but considered jointly. They 
reported that in the surveyed literature no consistent result regarding ranking using 
MAD metric could be derived: method A outperforms method B in some papers 
and the opposite happens in others. According to the authors neglecting the results 
in terms of SD is the reason behind such inconsistence. They found that SD 
decreases while increasing the number of neighbours considered in the calculations 
(which might be as large as the total number of available points minus one, and as 
low as one, as it happens for the nearest neighbour method). The authors claim that 
there exists a trade off between the minimum MAD and the SD; increasing the 
number of neighbours decrease MAD but increases SD. The conclusion is that the 
best method (with its optimal parameters) should minimize at the same time MAD 
and SD. In their calculation the authors use all the available data with a jacknife 
approach. 

(FGDC, 1998) issued the National Standard for Spatial Data Accuracy (NSSDA 
hereinafter), providing a procedure to evaluate a metric of success based upon 
RMSE. The procedure could be readily adapted for our purposes: the control points 
are splitted into a subset A and its complement. The former might be chosen by 
hand or at random, and the latter should have at least 20 points well distributed in 
the domain. They will take the role of “ground truth” (without being so, as correctly 
pointed by Bater and Coops, 2009). The interpolation procedure only considers 
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data from subset A, and the accuracy of the interpolated surface w.r.t. ground truth 
could be evaluated by building a vector of discrepancies of at least 20 elements. Its 
norm (i.e. RMSE), its MAD, or any other metric could be used. (Bater and Coops, 
2009) used this procedure to over 1.3e6 points (which is their case is 3% of the 
available set). Notice that, with the CV method the error vector used for the metric 
is unique, while every random choice of the 20 points reserved for NSSDA 
calculation will provide a different value, giving room to perform a simulation. 
This difference will be crucial for our proposal.  

 (Bater and Coops, 2009) reported an experiment where LIDAR elevation data 
were pre-processed to locate bare soil points, and afterwards they were interpolated 
to estimate a DEM. The goal was to calculate tree height through the difference 
between the raw LIDAR elevation data (measuring top of canopy as well as bare 
soil) and the DEM. Their metric of success was the MAD and MSE calculated over 
a set of control points. By considering other sources of information (like vegetation 
index, slope, etc.) they were able to enrich the deterministic DEM with a 
companion uncertainty surface. They performed a simulation with just 48 events, 
and ranked the results according to the mean of every relevant metric. 

As a final conclusion, we could state that:  
a) most of the rankings are derived from a single dataset, using all available 

data at once with a deterministic procedure. This includes as a particular 
case the CV case. Others used a stochastic approach, by select a random 
subset of the available information to estimate the interpolant, and the rest 
to evaluate its merits. 

b) when a simulation has been performed, the ranking is the result of 
analyzing the mean value of the relevant metric (RMSE, MAD, etc.)  

c) the relevant metric might be problem dependent 

3. A metric which considers spectral properties 

It has been argued that some interpolation methods adds artifacts to the surface, 
which do not appears in the real field. In the image processing community it is 
commonplace to analyze such topic not in the euclidean space but in the spectral 
one. For simplicity, we will assume that our ground truth is arranged in a regular 
grid, and that all interpolation methods will also estimate values at pixel locations.  

Our assumption is that the best interpolation method will not only fit data at 
control points, but also will produce either a 2D periodogram or a 2D Power 
Spectrum Density (PSD) which resembles the expected one. This need not to be a 
perfect fit; we could use a standard metric (like the ESAM one, described by Chen 
et al., 2008) to measure its discrepancy, or resort to some other home-made visual 
aid. The ESAM metric compares images; we will use to pairs of PSD. If applied to 
images U and V with corresponding pixels ui, vi, the expression is 
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which is exactly zero for U=V. Our images U and V will be the interpolated DEM 
and the ground truth, both minus their own spatial average. The interpolated DEM 
is build as the sum of the low accuracy DEM (completely known in the domain) 
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plus an interpolation of the difference against ground truth but only known at N 
control points. 

4. Proposed ranking procedure, now with confidence level 

As mentioned before, the stochastic approach as used in the reported literature 
take first the average results over the different events, and afterwards sorts the 
methods according to a “greater-than” rule. As a fundamental disadvantage, this 
procedure hides the fact that some method might be better in most of the events, but 
fail miserably in a handful of others degrading its average performance. For our 
purposes, we are willing to select at the top of the ranking the method which 
performs the best in most of the events.  

This is a known problem in medicine, usually applied for assessing the effect of 
a treatment to different individuals. Other equivalent formulation is a wine contest: 
each judge produces a ranking among the bottles, and the collective output is 
analyzed in order to find systematic differences. The null hypothesis is that they do 
not exist. The Friedman Test (described by Bewick et al., 2007) assumes that there 
exist a table with enough rows (events) and as many columns as algorithms. Each 
row holds the rank among the methods for a particular event, according to the 
RMSE, MAD or whichever continuous or ordinal criteria. Given a confidence 
level, the test accepts or rejects the null hypothesis. In addition, it helps to state that 
some methods do not show statistically significant differences. The Friedman Test 
requires a minimum number of events (15) which we will show that can be easily 
achieved and a minimum number of methods (4) which some of the reported papers 
do not satisfy. 

5. Data and methods 

We claim that the best interpolation algorithm should not merely fit at much as 
possible the DEM height at some independent control points, but also should take 
into account the spectral properties of the field. To illustrate our point we devise an 
experiment where a reference DEM and a lower accuracy one are available. They 
are from the Aix-en-Provence region in the South of France, both of 12.42 km by 
6.9 km, 30 m spacing and described by (Day and Muller, 1988). Using the latter 
and a sample of irregularly distributed points from the former, we applied a number 
of interpolation methods and create estimates of the reference DEM. Its accuracy 
can be evaluated using no less than 20 well separated control points (following 
FGDC, 1998) and estimating the RMSE/MAD of the differences between reference 
DEM and each interpolated DEM. Independently, we evaluate the 2D power 
spectrum density of the reference DEM as well as each of the interpolated ones. As 
a metric of success we used the ESAM one (Chen et al., 2008) which belongs to 
[0,1]. Finally, we compared and discussed both rankings. 

We will denote as event one particular choice of a sample of control points to be 
used by each interpolation method. In this experiment, control points are pixels so 
their spatial coordinates are discrete. For each event, we selected at random N=500, 
2500 and 5000 non-duplicated pixels not coinciding with any of those used for the 
NSSDA evaluation. We applied six different interpolation algorithms, evaluate the 
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results over the 20 NSSDA pixel locations and quantify the accuracy as MAD and 
RSME following (FGDC, 1998). The PSD of the ground truth and each 
interpolated DEM were used to evaluate the ESAM metric. After collecting the 
results of all 250 events, we might proceed as usual by averaging each metric (i.e. 
RMSE for example) and ordering the methods according to the smallest values. 
Three possible rankings could be obtained, according to RMSE, MAD and ESAM. 
However, as described before, we could safely rank the methods with a 95% 
confidence levels using instead the Friedman test, producing a (surprisingly) 
different ranking.  

5. Results 

Results are summarized in Table 1. Following common practice, the average of 
250 events of each metric is used to create a ranking among interpolation methods. 
For example, the conclusion is that when there exist a large number of control 
points, IDW_2 (Inverse Squared Distance Weighting) is the preferred option in 
terms of the ESAM criteria, followed by Nearest Neighbour (NEARESTN) and 
GRIDDATA_V4. However, if we rank each event, and afterwards apply the 
Friedman Test to 250 possible rankings, we can conclude with 95% confidence 
level that the best option is NEARESTN, followed by GRIDDATA_V4 and 
IDW_2. All differences between methods were statistically significative.  

Table 1: Ranking among the six different interpolation algorithms with 95% confidence 
level as a function of the number of interpolation points. Results after 80, 120 and 250 events 
were almost the same, so they are not reported separately. Entries presented as “A/B” shows 
disagreements between the ranking according to Friedman test and the ordering based upon 

the mean values; otherwise a single value is shown. 
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GRIDFIT_Smooth20 4 4 4/5 4 4 4/5 4 4 4/5 
GRIDFIT_Smooth05 5 5 5/4 5 5 5/4 5 5 5/6 
GRIDFIT_Laplacian 6 6 6 6 6 6 6 6 6/4 

IDW_2 1 1 1 1 1 1 1 2 3/1 
NEARESTN 2 3 3/2 2/3 3 3/2 2 1 1/2 

GRIDDATA_V4 2 2 2/3 2/2 2 2/3 3 3 2/3 
 
When considering MAD or RMSE, the IDW_2 consistently outperformed the 

others irrespective of the number of data points and the way we build the ranking. 
On the other hand, the second and third place depends on both; GRIDDATA_V4 is 
consistently the second while NEARESTN is very close for 500 points (there is a 
tie both for MAD and RMSE) but fall to the third place when more control points 
are available.  

The ranking by the ESAM criteria changes as the number of control points 
increases; NEARESTN appears to be the winner, improving with N, while IDW_2 
degrades consistently.  
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3. Conclusion 

Using the Friedman test, we could attach a confidence level to a ranking 
between interpolation methods. Our results show that common practice (rank the 
mean values of the Monte Carlo experiment) does not necessarily produce the same 
rank. In the experiment, disagreements were found for the case of 5000 control 
points irrespective of the metric considered. 

Another contribution of this work is the consideration of spectral characteristics 
of the interpolated field. Methods which are the best with traditional metrics 
(RMSE, MAD) perform worse when considering spectral metrics, which suggest a 
tradeoff. The choice of which spectral metric (ESAM) to use might be a subject of 
future evaluation.  

We believe that a rank with confidence level is a significant improvement over 
common practice, and that future comparison should take into consideration also 
spectral properties of the interpolated field.  
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